Abstract

SummaryIn this paper, an efficient numerical method is proposed to calculate the anisotropic permeability in porous materials characterized by a periodic microstructure. This method is based on pore‐scale fluid dynamic simulations using a static volume of fluid method. Unlike standard solution procedures for this type of problem, we here solve an average constitutive equation over both fluid and solid domain by use of a subgrid model to accurately capture momentum transfer from the fluid to solid interface regions. Using numerical simulations on periodic arrays of spheres, we first demonstrate that, by using the subgrid interface model, more accurate results can be produced, for the velocity and pressure fields, than via more conventional approaches. We then apply numerical upscaling over the unit cell to calculate the full anisotropic permeability from the pore‐scale numerical results. The obtained permeability values for a variety of periodic arrays of spheres in different arrangements and packing orders are in good agreement with semianalytical results reported in literature. This validation allows for the permeability assessment of more complex structures such as isotropic gyroid structures, or anisotropic cases, here modeled in their simplest form, the ellipsoidal inclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call