Abstract

Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments; however, limitations of previous analytic work have prevented definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fields required for ion acceleration are determined for various plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal Alfvén eigenmodes during tokamak disruptions is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call