Abstract

Axial force is one of the important factors affecting the life and reliability of centrifugal pumps. Based on the SST turbulence model, the unsteady internal flow field of an aero fuel centrifugal pump under various working conditions was analyzed by using the finite volume method and the axial force of the impeller component was predicted. The position servo force measuring system was used to measure the axial force of the fuel centrifugal pump and the theoretical formula of axial force was modified according to the numerical results and experimental values. The study shows that the pressure distribution of the front and rear pump chambers presented uneven circumferential distribution under the influence of dynamic and static interference through numerical simulation. The simulated head number is basically consistent with the test result and the maximum error of the axial force value obtained by the numerical calculation and the experimental value was 9.7% under different speeds, which verified the accuracy of the numerical simulation. Furthermore, the modified formula can accurately calculate the axial force of the fuel centrifugal pump with an error of less than 9.88%. The results of the study provide a theoretical basis for the calculation and balance of axial force in an aero aero fuel centrifugal pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.