Abstract
This paper studies the Neimark–Sacker bifurcation of a diffusive food‐limited model with a finite delay and Dirichlet boundary condition by the backward Euler difference scheme, Crank‐Nicolson difference scheme, and nonstandard finite‐difference scheme. The existence of Neimark‐Sacker bifurcation at the equilibrium is obtained. Our results show that Crank‐Nicolson and nonstandard finite‐difference schemes are superior to the backward Euler difference scheme under the means of describing approximately the dynamics of the original system. Finally, numerical examples are provided to illustrate the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.