Abstract

With the aim of applying numerical methods, we develop a formalism for physiologically structured population models in a new generality that includes consumer-resource, cannibalism and trophic models. The dynamics at the population level are formulated as a system of Volterra functional equations coupled to ODE. For this general class, we develop numerical methods to continue equilibria with respect to a parameter, detect transcritical and saddle-node bifurcations and compute curves in parameter planes along which these bifurcations occur. The methods combine curve continuation, ODE solvers and test functions. Finally, we apply the methods to the above models using existing data for Daphnia magna consuming Algae and for Perca fluviatilis feeding on Daphnia magna. In particular, we validate the methods by deriving expressions for equilibria and bifurcations with respect to which we compute errors, and by comparing the obtained curves with curves that were computed earlier with other methods. We also present new curves to show how the methods can easily be applied to derive new biological insight. Schemes of algorithms are included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call