Abstract
Mass spectrometric (MS) isotopomer analysis has become a standard tool for investigating biological systems using stable isotopes. In particular, metabolic flux analysis uses mass isotopomers of metabolic products typically formed from 13C-labeled substrates to quantitate intracellular pathway fluxes. In the current work, we describe a model-driven method of numerical bias estimation regarding MS isotopomer analysis. Correct bias estimation is crucial for measuring statistical qualities of measurements and obtaining reliable fluxes. The model we developed for bias estimation corrects a priori unknown systematic errors unique for each individual mass isotopomer peak. For validation, we carried out both computational simulations and experimental measurements. From stochastic simulations, it was observed that carbon mass isotopomer distributions and measurement noise can be determined much more precisely only if signals are corrected for possible systematic errors. By removing the estimated background signals, the residuals resulting from experimental measurement and model expectation became consistent with normality, experimental variability was reduced, and data consistency was improved. The method is useful for obtaining systematic error-free data from 13C tracer experiments and can also be extended to other stable isotopes. As a result, the reliability of metabolic fluxes that are typically computed from mass isotopomer measurements is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.