Abstract

Hydrogen containers type IV should stand for severe operational conditions, such as temperature variations from −40 °C to 85 °C, and depressurisation from high-pressure above 95 MPa to near atmospheric pressure. There are experimental studies showing that container's liner, usually a thermoplastic material, can suffer blistering and buckling during depressurisation process. It has also been proved that elastomers under high-pressure conditions, which are submitted to a rapid depressurisation, can suffer the formation of cavities because of the dissolved gas. The formation of microscopic defects in thermoplastic materials because of rapid depressurisation is less common in scientific literature.In this paper, we evaluate by numerical means the maximum depressurisation rate a polymer sample can stand before cavitation occurs. By studying the influence of geometrical and pressure conditions, so as material's properties, we obtain algebraic equations that define maximal depressurisation rate. Results of present work serve to estimate performance of liner materials, with the scope of safe and fast container discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.