Abstract
Abstract Aquifers have advantages over salt caverns as the vessels for compressed air energy storage due to their wider availability for suitable sites and lower one-off capital investment for construction. We conducted numerical simulations for compressed air energy storage in aquifers (CAESA) to investigate the effects of injected air temperature, the number of injection/production wells and their configurations on cycle performance, based on the data from the Pittsfield CAESA test. The results show that injected air temperature has a negligible effect on the overall energy recovery efficiency, but a higher injected air temperature leads to a higher energy storage capacity. A multiple-injection/production-well arrangement can achieve a larger storage capacity than single-well systems. The distance between the injection/withdrawal wells will affect the storage capacity. This suggests that for a multiple-well CAESA system, a comprehensive modelling study should be used for the optimal system design to achieve the most desirable storage capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Geological Society, London, Special Publications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.