Abstract

The 2010 Maule earthquake in Chile caused extensive lateral spreading at the site of the Mataquito river bridge. The surface soil deformation patterns and relatively minor structural damage to the bridge observed at this site suggest that foundation pinning effects played a prominent role in the overall response of the bridge abutments to the lateral spreading. 3D finite element analysis of a Mataquito river bridge abutment is used to examine the role of foundation pinning, lateral bridge deck resistance, the deck expansion gap, and the 3D site geometry on the response of the abutment and approach embankment to a simulated lateral spreading event. A parameter study using a second set of 3D finite element models is conducted in order to further investigate the influence of 3D geometric site effects, such as the width of the embankment crest and thickness of the non-liquefiable crust, on the response of deep foundations to kinematic demands consistent with lateral spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.