Abstract

High noise levels in a multi-noise plant can be harmful to workers and can lead to both psychological and physiological problems. Consequently, noise control work on equipment such as acoustic hoods becomes vital. However, research work of shape optimization on space-constrained close-fitting acoustic hoods has been neglected.In this paper, a sound insertion loss used for evaluating the acoustic performance of an acoustical hood will be adopted. A numerical case for depressing the noise levels at the receiving points along the boundary of three kinds of multi-equipment plants by optimally designing a shaped one-layer close-fitting acoustic hood and reallocating the equipment within a constrained space will also be introduced. Moreover, an artificial immune method (AIM) is adopted and coupled with the equations of sound attenuation and minimal variation square in conjunction with a twelve-point monitoring system.Consequently, this paper provides a quick and effective method for reducing the noise impact around a plant by optimally designing a shaped one-layer close-fitting acoustic hood and reallocating equipment within the AIM searching technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.