Abstract
AbstractBody heat loss management is the primary concern with respect to a newborn, as excess heat loss or gain leads to hypo‐ or hyperthermia, respectively. The aim of this article is to numerically investigate the convection and radiation heat transfer coefficient of a newborn nursed under a radiant warmer. The preterm neonate manikin has five body segments (head, trunk, leg, arms, and back) placed in a relaxed spine position. In the present study, numerical simulations are carried out for body temperature ranging between 32.5°C and 40.1°C. Ambient air temperature is chosen from 22.77°C to 30°C as preferred room temperature in the analysis. Airflow and heat transfer under the radiant warmer are analyzed in two operational modes, that is, power‐off and power‐on modes. In the power‐on mode, the convective heat transfer coefficient varies between 1.45 and 4.06 W/m2 K, whereas the radiative heat transfer coefficient varies between 0.08 and 3.28 W/m2 K under various operating conditions. The results obtained are numerically validated and found to be in fair agreement with the experimental results available in the open literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.