Abstract
Abstract In this paper, the risk of cavitation erosion is assessed in a commercial water-jet pump using a recently developed numerical erosion assessment method by Arabnejad et al. (2021, “Numerical Assessment of Cavitation Erosion Risk Using Incompressible Simulation of Cavitating Flows,” Wear, 464–465, p. 203529). This assessment is performed for two flow conditions with different cavitation erosion risk according to the experimental paint tests and the high erosion risk areas identified by the method are compared with the experimental results. This comparison shows that the applied method is capable of both identifying the regions of high erosion risk and also capturing the difference between the cavitation erosion risk in the two studied conditions. The latter capability of the numerical assessment method, which has not been reported in the literature for other published methods, is one step forward toward the application of the method in the design process of hydraulic machines. Furthermore, the numerical results are analyzed to explain the reasons for different erosion risk in the two conditions. This analysis reveals that this difference is mostly related to the stronger flow nonuniformities entering the rotor in the most erosive condition. Using the numerical results, one reason behind these stronger nonuniformities is identified to be the stronger bursting of vortices shed from the shaft in the most erosive condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.