Abstract

The discrete variables (DV) time-frequency (TF) quantum key distribution (QKD) protocol is a BB84 like protocol, which utilizes time and frequency as complementary bases. As orthogonal modulations, pulse position modulation (PPM) and frequency shift keying (FSK) are capable of transmitting several bits per symbol, i.e. per photon. However, unlike traditional binary polarization shift keying, PPM and FSK do not allow perfectly complementary bases. So information is not completely deleted when the wrong-basis filters are applied. Since a general security proof does not yet exist, we numerically assess DV-TF-QKD. We show that the secret key rate increases with a higher number of symbols per basis. Further we identify the optimal pulse relations in the two bases in terms of key rate and resistance against eavesdropping attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.