Abstract

We study several schemes of first- or second-order accuracy based on kinetic approximations to solve pressureless and isothermal gas dynamics equations. The pressureless gas system is weakly hyperbolic, giving rise to the formation of density concentrations known as delta-shocks. For the isothermal gas system, the infinite speed of expansion into vacuum leads to zero timestep in the Godunov method based on exact Riemann solver. The schemes we consider are able to bypass these difficulties. They are proved to satisfy positiveness of density and discrete entropy inequalities, to capture the delta-shocks, and to treat data with vacuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.