Abstract
We introduce a new class of anticipative backward stochastic differential equations with a dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence and uniqueness results in a general framework with relatively general regularity assumptions on the coefficients. We show how such stochastic equations arise within the modern paradigm of derivative pricing where a central counterparty (CCP) requires the members to deposit variation and initial margins to cover their exposure. In the case when the initial margin is proportional to the Conditional Value-at-Risk (CVaR) of the contract price, we apply our general result to define the price as a solution of a MKABSDE. We provide several linear and non-linear simpler approximations, which we solve using different numerical (deterministic and Monte-Carlo) methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.