Abstract

AbstractIn this article, we propose an implicit pseudospectral scheme for nonlinear time fractional reaction–diffusion equations with Neumann boundary conditions, which is based upon Gauss–Lobatto–Legendre–Birkhoff pseudospectral method in space and finite difference method in time. A priori estimate of numerical solution is given firstly. Then the existence of numerical solution is proved by Brouwer fixed point theorem and the uniqueness is obtained. It is proved rigorously that the fully discrete scheme is unconditionally stable and convergent. Furthermore, we develop a modified scheme by adding correction terms for the problem with nonsmooth solutions. Numerical examples are given to verify the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.