Abstract
The Markov chain approximation method is a widely used, relatively easy to use, and efficient family of methods for the bulk of stochastic control problems in continuous time for reflected-jump-diffusion-type models. It has been shown to converge under broad conditions, and there are good algorithms for solving the numerical problems if the dimension is not too high. We consider a class of stochastic differential games with a reflected diffusion system model and ergodic cost criterion and where the controls for the two players are separated in the dynamics and cost function. It is shown that the value of the game exists and that the numerical method converges to this value as the discretization parameter goes to zero. The actual numerical method solves a stochastic game for a finite state Markov chain and ergodic cost criterion. The essential conditions are nondegeneracy and that a weak local consistency condition hold "almost everywhere" for the numerical approximations, just as for the control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.