Abstract

In this paper, we consider numerical approximations for a model of smectic-A liquid crystal flows in its weak flow limit. The model, derived from the variational approach of the de Gennes free energy, is consisted of a highly nonlinear system that couples the incompressible Navier-Stokes equations with two nonlinear order parameter equations. Based on some subtle explicit-implicit treatments for nonlinear terms, we develop an unconditionally energy stable, linear and decoupled time marching numerical scheme for the reduced model in the weak flow limit. We also rigorously prove that the numerical scheme obeys the energy dissipation law at the discrete level. Various numerical simulations are presented to demonstrate the accuracy and the stability of the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.