Abstract
An efficient and accurate numerical approximation methodology useful for obtaining the observed information matrix and subsequent asymptotic covariance matrix when fitting models with the EM algorithm is presented. The numerical approximation approach is compared to existing algorithms intended for the same purpose, and the computational benefits and accuracy of this new approach are highlighted. Instructive and real-world examples are included to demonstrate the methodology concretely, properties of the estimator are discussed in detail, and a Monte Carlo simulation study is included to investigate the behaviour of a multi-parameter item response theory model using three competing finite-difference algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: British Journal of Mathematical and Statistical Psychology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.