Abstract

In this paper, using well-known complex variable techniques, we compute explicitly, in terms of the F12 Gaussian hypergeometric function, the one-dimensional fractional Laplacian of the complex Higgins functions, the complex Christov functions, and their sine-like and cosine-like versions. Then, after studying the asymptotic behavior of the resulting expressions, we discuss the numerical difficulties in their implementation, and develop a method using arbitrary-precision arithmetic that computes them accurately.We also explain how to create the differentiation matrices associated to the complex Higgins functions and to the complex Christov functions, and study their condition numbers. In this regard, we show how arbitrary-precision arithmetic is the natural tool to deal with ill-conditioned systems.Finally, we simulate numerically the fractional nonlinear Schrödinger equation using the developed tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.