Abstract

SummaryIn this paper, we discuss the numerical approximation to solve regular tempered fractional Sturm‐Liouville problem (TFSLP) using finite difference method. The tempered fractional differential operators considered here are of Caputo type. The numerically obtained eigenvalues are real, and the corresponding eigenfunctions are orthogonal. The obtained eigenfunctions work as basis functions of weighted Lebesgue integrable function space (a,b). Further, the obtained eigenvalues and corresponding eigenfunctions are used to provide weak solution of the tempered fractional diffusion equation. Approximation and error bounds of the solution of the tempered fractional diffusion equation are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.