Abstract

AbstractThe current effort towards the progressive switch from carbon-based to renewable energy production is leading to a relevant spreading of both on- and off-shore wind turbine towers. Regarding reinforced concrete shallow foundations of onshore wind turbine steel towers, possible reductions of reinforcement obtainable by employing steel fibre-reinforced concrete (SFRC) may increase their sustainability, speed of erection, and competitiveness. At the same time, there is a strong need to extend the life of foundations erected more than 15 years ago, originally designed for only 20 years. The paper presents a numerical investigation based on the results of a research programme in progress at Politecnico di Milano with ENEL, concerning the reinforcement with steel fibres of concrete shallow foundations embedded in a sandy soil subjected to both cyclic and monotonic loading. The approach takes advantage from a careful modelling of soil-structure interaction to highlight the safety margins correlated to conventional design and shows how the multi-directional resistance of SFRC allows a significant reduction of resources, preventing any brittle behaviour correlated to a reinforcement reduction.KeywordsOnshore wind turbineShallow foundationsReinforced concreteFibre-reinforced concreteSoil-structure interaction (SSI)Nonlinear FE analyses

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.