Abstract

We outline an algorithm to compute numerically the black-to-white hole transition amplitude, using the loop quantum gravity covariant formulation and the Lorentzian Engle-Pereira-Rovelli-Livine model. We apply the algorithm to calculate the crossing time of the transition in the deep quantum regime, comparing our result with previous analytical estimates of the same physical observable in the semiclassical limit. Furthermore, we show how to evaluate the crossing time analytically using an alternative approach with respect to the one currently present in the literature. This method requires much easier calculations and emphasizes that the crossing time does not depend on the extrinsic geometry of the transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.