Abstract

A numerical model of a quantum repeater operating with Schrödinger cat states is constructed. The model describes the performance of such a system in the presence of decoherence effects, namely, noise in the quantum channel and the efficiency of the photon-number-resolving detector. In the framework of the numerical model, a theoretical analysis of the system functioning is carried out for the elementary link by calculating its performance characteristics. Namely, we calculate photodetector click probabilities and fidelity for various sets of decoherence parameters. These estimates are necessary in the context of further experimental research at the junction with other branches of quantum communications, so that to use the entanglement distribution when it comes to operating quantum teleportation and quantum key distribution protocols based on entanglement. The model will be developed further as a versatile drag-and-drop software simulating the full-fledged entanglement swapping protocol operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.