Abstract
The most popular methods for the solution of stiff initial value problems for ordinary differential equations are the backward differentiation formulae (BDF). In this paper, we focus on the derivation of the fourth, sixth and eighth order extended trapezoidal rule of first kind (ETRs) formulae through Hermite polynomial as basis function which we named FETR, SETR and EETR respectively. We then interpolate and collocate at some points of interest to generate the desire method. The stability analysis on our methods suggests that they are not only convergent but possess regions suitable for the solution of stiff ordinary differential equations (ODEs). The methods were very efficient when implemented in block form, they tend to perform better over existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.