Abstract

Bolted ball-cylinder (BBC) joints are suitable for non-purlin space structures to effectively reduce structure height and save material costs. In this paper, we present a numerical and theoretical study for high-strength steel BBC joints at elevated temperatures. An finite element (FE) model was first developed, in which the effects of elevated temperatures were considered by introducing reduction factors for the material properties of steel, such as the yield stress and Young’s modulus, to analyze the structural behavior of BBC joints subjected to compressive, tensile or bending loads. Based on parametric studies on 441 FE models, effects of the key parameters, including joint dimensions, material strength and temperatures, on the structural behavior of BBC joints are discussed. Then, theoretical analysis is conducted, and design methods are proposed to estimate the ultimate load-carrying capacity of BBC joints. Finally, we verified the accuracy of the design method by comparing the prediction with the FE results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.