Abstract

Abstract Six specimens with one Tee-bar stiffener and its attached plating were tested under axial compression to investigate the ultimate strength. The specimens have one longitudinal span and the simply supported boundary conditions at the end edge of loading were produced based on a horizontal test fixture. The initial geometrical imperfections were measured and tensile tests of high tensile steel used in the specimens with different thickness were conducted. The results calculated by FE analysis with true stress-strain curves, average measured thickness and measured initial geometrical deformation could reach a good agreement with experimental results. The ultimate strength calculated with elastic/perfectly plastic curve is approximately 10% larger than that with true stress-strain curve. The reason is that the proportional limit stress of material is significantly lower than 0.2% proof stress for the high strength steel used in specimens. And the occurrence of buckling is earlier than the time that the material enters into plastic stage. As a result, the ultimate strength assessed with elastic/perfectly plastic curve doesn’t always the lowest result and it should be adopted carefully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.