Abstract

As an important working condition in water conveyance projects, the water filling process of pipelines is a complex hydraulic transition process involving water–air two-phase flow with sharp pressure changes that can easily cause pipeline damage. In light of the complex water–air two-phase flow during pipeline water filling, this study explores the water filling process of right-angle elbow pressure pipelines using CFD numerical simulations and physical model experiments, analyzing changes in water phase volume fraction, water-gas two-phase flow patterns, and hydraulic parameters in the pipeline under low flow rate conditions of 0.6 m/s and high flow rate conditions of 1.5 m/s. Results show that under low flow rate conditions, there is more local trapped gas at the top of the pipeline, causing negative pressure at local high points in the pipeline and forming a vacuum. Under high velocity conditions, water-gas two-phase flow changes more frequently in the pipeline, with a large number of bubbles collapsing at the top, resulting in large fluctuations in pipeline pressure. Finally, through physical experiments, the main flow patterns during water filling in right-angle elbows are verified and analyzed. These results have certain reference significance for formulating safe and efficient water filling velocity schemes for pressurized pipelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call