Abstract

This study presents an investigation on the joint forming mechanism of pneumatic splicing by numerical and experimental methods. A one-way coupling numerical model concerning interaction between fluid and filaments was established to simulate the complex motion of a flexible body in a spiral flow field. The airflow field in the splicing chamber, which contributes to longitudinal and normal aerodynamic force along a filament regarded as a digital chain composed of a series of interconnected rods, was obtained by a two-equation turbulent computational fluid dynamics model. Contact-friction behavior within filaments was also taken into consideration. An iterative algorithm was adopted to update the displacement of filaments and the corresponding aerodynamic force. A high-speed visualization test bench was built to record the sequence motion of filaments in the splicing process. The splicing mechanism within flexible filaments was identified by comparison between the experimental data and numerical results. The filament portion located in the homolateral rotating channel with respect to orifice is blown to bent by the jet airflow. It contributes to a frontal area in the axial airflow direction, causing the filament to be retracted toward its fixed end. Meanwhile, the portion in the contralateral rotating channel tries to wrap around the opposite filaments due to the spiral airflow. The interaction between filaments generates the contact force and related friction force, which commonly resists the retracting force exerted on the homolateral filament portion. The competition between the two forces determines whether the joint can be formed. Furthermore, the influence of the overlapping length on splicing behavior was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.