Abstract

Recuperator is one of the key components in high temperature gas cooled reactors. Although cross-corrugated plates have been used to increase the thermal performance of the recuperators, the fundamental mechanisms of fluid flow and heat transfer are generally not clear. Fluid dynamics simulations and experiments are hence carried out to study the performance of the recuperators. A periodic cell is employed as the control volume. The flow field and heat transfer in sine-wave crossed-corrugated channels are investigated based on the Navier–Stokes and energy equations in the laminar flow regime between Re = 84 and 1168. The numerical results of the heat transfer factors and friction factors in different operating conditions show a fairly good agreement with the experimental measurements. The influence factors on the heat transfer and the hydraulic performance are also discussed in the paper. It is found that the heat transfer factor j and friction factor f decrease with the increase of the pitch-height ratio for a given Reynolds number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.