Abstract

Tailored properties hot forming of 38MnB5Nb by partition cooling can be configured on-demand. A gradient distribution microstructural characteristic can be generated by undertaking an appropriate cooling-tempering process for the regions with different properties requirements before forming. A unified viscoplastic constitutive model coupled with the primary cooling temperature and related material constants is established based on genetic algorithm. Meanwhile, the use of the mixture of jet air and dry ice particles to cool the partition region is essential to achieve different primary cooling temperatures. In this paper, the inverse heat conduction problem is solved to obtain the relationship between the interfacial heat transfer coefficient and different cooling conditions in the partition cooling process. The U-shaped part is taken as an example to simulate the change of temperature, stress-strain, thickness, and spring-back in the process of partition cooling and tailored hot forming properties. The results show that the gradient microstructural characteristic formed by partition cooling has a great influence on the stress field distribution. The maximum stress of 345 MPa can be reached after complete pressure holding in the partition slow cooling tailored properties of the hot forming process. The maximum stress can reach 743 MPa in the partition fast cooling tailored properties of the hot forming process due to the relatively high deformation resistance of the tempered martensite at the bottom center. The maximum residual stress in the two processes after spring-back drops to 305 MPa and 545 MPa, respectively. The spring-back is small under the two processes, with a maximum spring back angle of no more than 1°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.