Abstract

With continuous increase in chip power, cooling has gradually evolved into the bottleneck restricting the development of data centers (DCs). In this study, a double-side cooling module based on mini-channel heat sink was proposed to solve the heat dissipation of multi-high power chips on the computing server of DCs. Numerical simulations were carried out to optimize the geometry of the cooling module and experiments were set up to test its cooling performance. The results show that staggered fins and parallel channels are beneficial to the heat transfer of the cooling module. Compared with traditional fins, the staggered fins bring a more uniform temperature distribution and reduce the maximum temperature of the chip because of the improved flow field. Compared with series channels, the maximum temperature and pressure drop of the heat sink with parallel channels can be decreased at the same time without changing inlet flow rate or heat transfer area. The cooling module was fabricated and assembled consisting of four heat sinks based on the optimized geometries. The experimental results indicate that it is capable of solving the cooling of 8 CPUs, 8 interconnect chips and multiple power supply chips on computing server with a total power up to 4400 W in 1U space when using water as coolant (10 L/min & 20 ℃). The maximum shell temperature of all CPUs can be kept under 45 ℃ when single chip power reaches 440 W. The assembly density of DCs can be doubled when cooled by this new module. These results imply that this cooling module is a promising solution for cooling DCs with high power and assembly density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call