Abstract

Clarifying the relationship between friction area and brake disc temperature is helpful to optimizing the brake pad structure. Aluminium-based brake disc temperature paired with circular friction blocks of different diameters (45, 60, and 65 mm) is obtained by the TM-I-type reduced-scale inertial braking dynamometer at braking speeds 60–160 km/h and braking force 1.66 kN. On the basis, the thermo-mechanical coupling model of friction pair is established to simulate the evolution of brake disc temperature by ADINA finite-element software, and the thermal energy gradient factor is proposed. Results indicate that the numerical brake disc temperature agrees with the measured, validating the numerical model. The friction area caused the difference of braking pressure, which affects the brake disc temperature. The decrease in the friction area accelerates the disc temperature rise and increases the area ratio of high-temperature zone and maximum temperature difference. The influence degree of friction area on the brake disc temperature varies with friction zone. The thermal energy gradient factor can effectively predict the distribution of temperature gradient on the disc surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.