Abstract

This paper describes a study of the centred collision between a dipolar vortex and a solid circular cylinder. The flow was analysed experimentally by using dye visualizations and streak photography. Flow characteristics such as vorticity fields and the transport of passive tracers were compared with numerical simulations. Observations revealed that thin layers of vorticity, created at the cylinder wall are advected by the primary dipole halves, which, while rolling up into compact patches, give rise to the formation of two new asymmetric dipoles that move away along curved trajectories. The structure of the vorticity distribution inside the dipole, before and after the collision, has been investigated. Both the numerical and the experimental results indicate that the vorticity patches originating from the original primary dipole approximately preserve their original functional relationship ω=f(ψ), while the secondary vorticity patches show a tendency to organize into structures attaining a similar relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.