Abstract

In this work, we propose to experimentally and numerically study the natural convection in laminar regime in an agricultural greenhouse located in South West of Algeria and more precisely in the Adrar area. The numerical study is two-dimensional and was carried out on a tunnel greenhouse with an area of 180m2 located in Adrar in the southwest of Algeria (Latitude: 27°52′27″N, longitude: 0°17′37″W, the laltitude above sea level is 257 m), with polyethylene cover and houses two rows of tomato plants. The experimental study was made during the winter or flowering period of tomato plants (February) when the temperature difference outside the greenhouse is maximum: T min = 3℃ at night and T max = 20℃ the day. We used a calculate code based on the finite element method to numerically simulate the phenomenon of heat transfer inside the greenhouse. The results of the numerical simulation are in the form of isotherms, streamlines and variations in temperature and speed in the greenhouse. The value of the temperature calculated by numerical simulation at the position where the sensor has been placed will be compared with that measured by the sensor. It was concluded that to have a favorable environment for the growth of tomatoes, we must keep the openings closed especially during the night without needing a heating system, especially in this region characterized by a hyper arid climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.