Abstract
The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.
Highlights
The increasing demand for energy today is alarming, especially considering that fossil fuels are essentially a limited resource and that greenhouse gases in mass quantities negatively affect our environment
This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application
According to the US Energy Information Administration (EIA), the global energy consumption could be around 780 quadrillion Btu by 2035 compared to the 410 quadrillion Btu consumed by the world in the year 2000
Summary
The increasing demand for energy today is alarming, especially considering that fossil fuels are essentially a limited resource and that greenhouse gases in mass quantities negatively affect our environment. According to the US Energy Information Administration (EIA), the global energy consumption could be around 780 quadrillion Btu by 2035 compared to the 410 quadrillion Btu consumed by the world in the year 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.