Abstract

Due to azimuthal-asymmetric electron emitting, TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode output of high-power microwave is unavoidable in coaxial vircator. In order to obtain a pure mode output, TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode enhanced design by opposed section electron emitting is applied. As 2-D effect along azimuthal direction is introduced, the frequency of microwave generated is shifted in TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode enhanced coaxial vircator, compared with the thoroughly coaxial one. Frequency characteristics of TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode enhanced coaxial vircator are numerically and experimentally studied by the 3-D particle-in-cell code UNIPIC. Simulation results show that a stable TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode output is generated nearly with a point frequency in the S-band by TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode-enhanced geometry, which is a little lower than that in the thoroughly coaxial geometry. In experiments, nearly point frequency and stable TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> -mode output is also obtained, and the effects of diode voltage, anode-cathode gap, and electron beams width are investigated. The results show that with higher diode voltage, smaller anode-cathode gap, and larger electron beam width, the microwave frequency is higher, particularly that the electron beam width has an equal effect with the diode voltage and the anode-cathode gap, which agree well with the simulation results. Meanwhile, microwave generation was obtained with steady power above 800 MW at about 5% efficiency in the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.