Abstract

Indentation tests with large penetration depths have been used to study the plastic deformation behavior of materials. In this work, finite element simulations of wedge indentation into face-centered cubic single crystals were performed. Numerical solutions to the stresses and shear strains within the single crystals indented with a relatively large penetration depth were obtained. The crystal lattice rotation map of the indented crystals was also shown. Indentation experiments were conducted on copper crystals and the results were used to validate the numerical predictions. Comparison of the numerical solutions to the crystal lattice rotation with the experimentally measured lattice rotation map was made. The main features of the crystal lattice in-plane rotation map from the finite element simulations are also found on the map developed from the electron backscatter diffraction measurements. Both simulations and experimental measurements reveal the same dislocation structures as evidenced by the slip sectors underneath the wedge indentation zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.