Abstract

This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five different atomization gas pressures of 1–5MPa, with different gas exit jet distances of 1.65, 1.6, 1.55, 1.5, 1.45 and 1.40mm from the melt nozzle external wall, was combined with four melt nozzles of varying gas jet mis-match angles of 0°, 3°, 5°, and 7° relative to the melt nozzle external wall (referred to as nozzle types 1–4). The results show that nozzle type 1 with the smallest mis-match angle of zero degrees has highest back-stream flow at an atomization gas pressure of 1MPa and a gas die exit jet located between 1.65mm and 1.5mm from the external melt nozzle wall. This phenomenon decreased with increasing mis-match angle and at higher atomization gas pressure. For nozzle type 2, with a mis-match angle of 3 degrees, a weak back-stream flow occurred with a gas exit jet distance of 1.65mm from the melt nozzle external wall. For a gas pressure of 1MPa with a decrease in the gas jet exit distance from the external wall of the melt nozzle this phenomenon was eliminated. This phenomenon was not seen for nozzle types 3 and 4 at any gas pressure and C–D gas exit jet distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.