Abstract

A prediction method for the propagation life of fatigue crack for cracked components was provided and verified in this study to predict the propagation life of fatigue cracks on components in engineering applications conveniently and directly. In the simulation aspect, a finite element (FE) model of cracked specimen was created to obtain the stress intensity factor range ΔK. The FE model was verified by comparing simulated ΔK to a formulary calculated one. The simulated ΔK could be used for studying the relationship with crack size. In the experimental aspect, the fatigue crack propagation test was conducted on three specimens. The material coefficients C and m were fitted according to Paris’ law. The load cycles with different crack depths were recorded in the testing process. The propagation life of fatigue cracks of specimen was predicted via the relationship between ΔK and crack size a according to Paris’ law. The comparison between predicted life and experimental life of specimens indicated the feasibility of the method. The proposed prediction method in this study for the propagation life of fatigue cracks can be used in engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call