Abstract

Temperature distribution of plain-woven aramid fiber-reinforced plastics (AFRP) composites was investigated by numerical and experimental methods for their drilling process with low-mild spindle velocities. A three-dimensional (3-D) numerical model was proposed for predicting the temperature distribution. Drilling experiments were carried out to verify the proposed numerical model and investigate the thermal damages with low-mild spindle velocities. The accuracy of the proposed numerical model was acceptable with less than 8% relative errors compared with experimental results. Cutting heat easily accumulated even the AFRP composites were drilled with low-mild spindle velocities for their poor thermal conductivity. Temperature distributions presented a rounded diamond shape, which diagonal direction was consistent with the fiber direction. With the high heat accumulation, although the drilled hole wall was damaged by the high temperature, carbonation phenomenon was not serious for the low spindle velocity drilling. For the mild spindle velocity drilling case, a serious carbonation phenomenon had been observed, and the heat-affected layer in the hole wall was about 0.3 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.