Abstract
ABSTRACT In this study, the unique reverse-flow around the inlet nozzle of a squirrel-cage fan was numerically studied by computational fluid dynamics (CFD), and a non-axisymmetric D-type inlet nozzle was proposed to inhibit it. It is shown that serious back flow develops at the volute tongue when the fan operates at a low flow coefficient that is lower than the best efficiency point. The airflow passing the blade passages in reverse further crosses the impeller, mixing the clearance leakage airflow, and finally blows into the intake chamber near the circumferential position of . By installing the inlet nozzle along this direction, D-type inlet nozzle schemes with different blockage extent were calculated by CFD. The scheme with a cut distance of 70% of its exit-section radius was chosen as the best design by comprehensively comparing the back flow ratio and fan performance of different working conditions. CFD results illustrated that reverse blowing at the fan entrance was significantly constrained by this D-type inlet nozzle, and the vortex in the inlet chamber correspondingly disappeared. Experimental data illustrated that the new nozzle increased the fan pressure rise under low-flow conditions by about 6% and barely reduced performance at other working points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Computational Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.