Abstract

Pump as turbine (PAT) is one of the economical and effective energy recovery devices in small hydropower stations. A back-curved PAT and a front-curved PAT were designed, and performance characteristics were studied, the accuracy of the numerical calculation was verified by comparing with the experimental results. The entropy generation theory was used to compare performance and energy loss of PATs. The results show that the high efficiency range of front-curved PAT is significantly wider than that of back-curved PAT. Under part-load condition (0.8Qd), design flow condition (1.0Qd) and over-load condition (1.2Qd), the efficiency of the front-curved PAT is 0.6%, 5.9% and 7.9% higher than that of the back-curved PAT, respectively. The energy loss in the PAT impeller mainly comes from the turbulent entropy generation rate which is mainly concentrated on the blade leading edge and trailing edge. Flow separation and flow impact caused by the mismatch between the relative flow angle and the blade setting angle are the main mechanisms of energy loss in impeller. In addition, the loss caused by the wall friction in the front-curved impeller is less than that in the back-curved impeller. Therefore, the entropy generation theory can provide guidance for the performance optimization of PAT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call