Abstract

Abstract The poor mixing caused by zinc powder deposition in purification process is a serious problem which can’t be avoided in treatment of zinc-containing solid waste. Here, to enhance the purification efficiency of zinc-containing solid waste treatment reactor, two kinds of multi-blade combined stirring systems are compared with single layer four straight-blade and double-layer straight-blade (DFB) stirring systems which are traditionally chosen by industry. This study simulated and explored the flow field characteristics and purification effects of these four kinds of stirred-tank reactor, further proposes the unit ion purification energy (UIPE) as a criterion for purification energy consumption and effect evaluation. The results show that multi-blade combined (MBC) stirring system enhances axial flow by 12.56% in water. Meanwhile it effectively inhibits the growth of isolated mixing region which scope has decreased by 56.25%. In high viscosity Carboxymethylcellulose sodium solution, the fluid axial speed can be increased by up to 1407 times with MBC. MBC can increase the purification rate by 24.79% while the UIPE decreases by 29.45% compared with DFB which is used in industrial purification process. MBC paddle has exhibited a wide range of fluid viscosity applicability and axial velocity improvement effect. The improvement increases collisions between the impurity particles and the zinc powder particles, which increased rate of substitution reactions. The application of MBC solves the purification problem in the process of treating zinc-containing solid waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call