Abstract
In this paper, the key assumptions in the M-K and effective stress ratio models are investigated for AISI 1018 steel specimens with a thickness of 0.78 mm using experimental and numerical data from Marciniak tests. The experimental procedure included Digital Imaging Correlation (DIC) to measure the major and minor in-plane strains. Strain components were obtained at points inside (i.e., the defect region) and adjacent (i.e., the safe regions) to the high strain concentrations for four different strain paths. In the numerical analysis, FEA simulations with Marc Mentat were performed with shell elements to investigate the four specimen geometries. The key assumptions of interest are the incremental major strain ratio from M-K model and the critical stress concentration factor from effective stress ratio model. Thus, the mechanics- and material-based failure phenomena in these two analytical models are examined in this paper to provide insight into the material behavior at failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.