Abstract

Seawater hydraulic axial piston motor is an important and elemental component in underwater tool system. The torque characteristics for a swash-plate-type seawater hydraulic axial piston motor is investigated, and an integrated torque model for the motor with symmetrical pre-compression angles has been developed, which consists of a torque sub-model and a dynamic pressure sub-model. Numerical simulations have been carried out to examine the effects of (a) pre-compression angle, (b) relief-groove obliquity, (c) motor speed, (d) piston chamber dead volume, (e) friction on the dynamic pressure and the output torque characteristics. The results indicate that the pre-compression angle, the friction coefficient, and the clearance between cylinder bore/piston have significant impact on the torque characteristics. The test verification has been undertaken with a five piston water hydraulic motor. This research contributes to the mechanism of output-torque fluctuation in a swash-plate-type seawater hydraulic axial piston motor, as well as the investigation of the torque transition phenomenon owing to the pre-compression angle. The research has laid the foundation for the development and improvement of the seawater hydraulic axial piston motor in underwater tool system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.