Abstract

This article investigates the aerodynamic effects of human movement by experiment and numerical simulations. In the experiment, a life-size thermal manikin, a double-track orbit, and a trolley were used to realize human movement, and the velocity distribution of the induced airflow was measured. In the numerical simulations, dynamic meshing was used to simulate the human movement. The aerodynamic effects and flow fields under moving speeds of 0.5, 0.75, 1.0, 1.25, and 1.5 m/s were studied. The same timing relationship and tendency of the instantaneous velocity can be found between the measured and computed results, although the computed peak values are smaller than the measured ones. Apparent recirculation zones and vortices can be seen in the wake behind the human body in numerical simulations. The streamwise velocity profile and the structure of the wake depend on the profile of the human body and the moving speed. At each location, the nondimensional relative velocities of different moving speeds are substantially the same. The aerodynamic effects of human movements depend on the moving speed, moving distance, and spatial location. These results can be a good help for the studies on pollutant dispersion, control of air quality, and infectious diseases in indoor environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.