Abstract
A hypersonic viscous shock layer over a flat plate at the free-stream Mach number M∞ = 21 is investigated both numerically and experimentally. The shock layer is excited by either external acoustic field or blowing/suction on the plate surface. The interaction of disturbances with the leading edge shock wave and their development in the boundary layer are simulated by solving the Navier-Stokes equations with a high-order shock-capturing scheme. Data of numerical simulations are compared very favorably with measurements conducted in a hypersonic nitrogen wind tunnel using the electron-beam fluorescence techniques. Numerical simulations show that the interference between natural and artificially excited disturbances can be used for active control of the instability development. This conclusion is confirmed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.