Abstract

Melt casting of energetic materials is investigated, and a numerical model formulated for the analysis of the coupled fluid flow, heat transfer, and stress fields involved in this phase-change process. The numerical model is based on a conservative multi-block control volume method. The SIMPLE algorithm is employed along with an enthalpy method approach to model the solidification process. Results from the model are verified against experimental data as well as published numerical results for simplified cases. In the melt casting of RDX-binder mixtures, the very high viscosity of the melt leads to the influence of melt convection being very limited. The impact of different cooling conditions on the velocity, temperature and stress distributions, as well as on the solidification time, are discussed. The model can be used to improve the quality of cast explosives, by optimizing and controlling the processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.