Abstract

Ejectors are simple mechanical devices with no moving parts which convert the pressure energy of a motive fluid to kinetic energy and generate suction of the secondary fluid. The ability to recover waste heat, to operate using solar power and the ability to use geothermal energy make ejector-based systems attractive in different industrial applications. The main challenge of ejector-based refrigeration systems is their relatively low coefficient of performance (COP). In order to increase the ejector performance, two chemically distinct fluids can be used in the refrigeration cycle. It is suggested that a higher molecular mass be used for the motive fluid to improve the entrainment ratio of the binary fluid ejector (BFE) and thus the system COP. Inert gas combinations of argon–helium and krypton–air are studied in this paper using computational fluid dynamics (CFDs) and experimental measurements. All CFD cases were axisymmetric and the appropriate turbulence model was selected based on experimental validation. Specifically, the entrainment ratio and the static pressure along the ejector wall were measured to validate the CFD predictions. It was found that the molar entrainment ratio was significantly higher in argon–helium compared to krypton–air. The static pressure measurements along the wall, in addition, exhibited good agreement with the results obtained via computational fluid dynamics (CFDs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call